A General Reliable Quadratic Form: An Extension of Affine Arithmetic
نویسندگان
چکیده
In this article, a new extension of affine arithmetic is introduced. This technique is based on a quadratic form named general quadratic form. We focus here on the computation of reliable bounds of a function over a hypercube by using this new tool. Some properties of first quadratic functions and then polynomial ones are reported. In order to show the efficiency of such a method, ten polynomial global optimization problems are presented and solved by using an interval branch-and-bound based algorithm.
منابع مشابه
A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension
We describe an algorithm for linear and convex quadratic programming problems that uses power series approximation of the weighted barrier path that passes throi^ the current iterate in order to find the next iterate. If r » 1 is the order of approximation used, we show that our algorithm has time complexity O(n'"""^'^*i."*'^'') iterations and O{n^ + n^r) arithmetic operations per iteration, wh...
متن کاملFast reliable interrogation of procedurally defined implicit surfaces using extended revised affine arithmetic
Techniques based on Interval and Affine Arithmetic and their modifications are shown to provide reliable function range evaluation for the purposes of surface interrogation. In this paper we present a technique for the reliable interrogation of implicit surfaces using a modification of Affine Arithmetic called Revised Affine Arithmetic. We extend the range of functions presented in Revised Affi...
متن کاملOn the quadratic support of strongly convex functions
In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.
متن کاملAffine and Projective Universal Geometry
By recasting metrical geometry in a purely algebraic setting, both Euclidean and non-Euclidean geometries can be studied over a general field with an arbitrary quadratic form. Both an affine and a projective version of this new theory are introduced here, and the main formulas extend those of rational trigonometry in the plane. This gives a unified, computational model of both spherical and hyp...
متن کاملClose interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program
The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reliable Computing
دوره 12 شماره
صفحات -
تاریخ انتشار 2006